Blow Up Syllabus

I PUC BIOLOGY (36)

	Unit-1 Diversity in the living world : 17Hrs	
	Chapter1- The living world Definition of living organisms, Characteristics of living organisms Diversity in the living world- biodiversity definition Nomenclature, Binomial nomenclature, rules Taxonomic categories Taxonomic hierarchy and concept of	3 Hrs
	species,genus,family,order,class,phylum/division and kingdom Taxonomic hierarchy for man,housefly,mango and wheat Taxonomical aids-herbarium, botanicalgarden,museum,zoological park and key	Lie, or it, programme and an analysis of the second of the
	Chapter2- Biological classification Classification of living organisms Five kingdoms of life and basis of five kingdom classification. Salient features and Classification of Monera, Protista and Fungi into major groups, Salient features plantae and animalia Virus, Viroids and Lichens	2 Hrs
	Chapter 3-Plant kingdom Salient leature and classification of plants into major group Algae, Bryophytes, Pteridophytes, Gymnosperms and features of each category and at least two examples of each. Angiosperms Classification up to class, characteristic features and examples. Plant life cycles and alternation of generation	6 Hrs
	Chapter 4-Animal kingdom Basis of classification and salient features of Major non chordate phyla and chordate classes with examples Unit II: Structural organization in plants and animals: 15 Hrs	8 Hrs
	Chapter 5 - Morphology of flowering Plants Morphology and functions of different parts of flowering plants. Root, Stem, leaf, inflorescence, flower, fruit and seed. (modification of root, stem, leaf, inflorescence types and families to be studied in practical)	5 Hrs
Fr. 2	Chapter 6-Anatomy of flowering plants: Tissues and tissue system, anatomy of root, stem and leaves of dicot and monocot plant (Anatomy of root and stem to be studied in practical)	6 Hrs
	Chapter7- Structural organization in animals Animal tissues, organ and organ systems. Digestive, circulatory, respiratory, nervous and reproductive systems of earth worm cockroach and frog (Note: Gross structure and function of the systems to be studied)	8 Hrs

Unit III : Cell Structure and function : 18 Hrs	
Chapter8- Cell-The unit of life Cell definition, Cell theory and cell as the basic unit of life. Structure of a prokaryotic and eukaryotic cell. Plant cell and animal cell. (brief) Structure and functions of Cell organelles—cell envelope, cell membrane, cell wall, Mitochondria, golgi complex, endoplasmic reticulum, ribosomes, lysosomes, vacuoles, plastids, microbodies, Cytoskeleton, cilia, flagella, centrioles. Nucleus—nuclear membrane, chromatin, nucleolus; Chromosomes-structure, types based on position of centromere	10 Hrs
Chapter9- Biomolecules Definition, types and functions of proteins, carbohydrates, fats, nucleic acids (excluding molecular structures). Enzymes types, properties, factors affecting enzyme action	5 Hrs
Chapter10- Cell cycle, cell division Cell cycle, Mitosis and meiosis, significance of, and differences between Mitosis and meiosis.	4 Hrs
Unit IV: Plant Physiology: 27 Hrs Chapter11- Transport in plants Absorption of water and nutrients. Cell to cell transport Diffusion and active transport. Plant – water relations Imbibition, water potential, osmosis, plasmolysis. Long distance transport Apoplast, symplast, root pressure, transpiration pull. Transpiration and Guttation Uptake of mineral and their translocation Transport through xylem and phloem.	7 Hrs
Chapter 12- Plants and mineral nutrition. Essential minerals, macro and micronutrients and their role Deficiency symptoms. Mineral toxicity. Elementary idea of Hydroponics as a Method to study mineral nutrition. Nitrogen metabolism Nitrogen cycle, biological nitrogen fixation.	7 Hrs
Chapter 13- Photosynthesis Autotrophic nutrition. Priestley's experiment Site of photosynthesis, structure of chloroplast Photosynthetic pigments (Elementary idea). Photochemical and biosynthetic phases of photosynthesis. light reaction Cyclic and non-cyclic photophosphorylation. Chemiosmotic hypothesis. Calvin cycle. Photorespiration. Factors affecting photosynthesis.Law of limiting factors.	5 Hrs

	Chapter 14- Plant Respiration Cellular respiration glycolysis, fermentation (anaerobic), TCA cycle and electron transport system (aerobic). Respiration balance sheet. Amphibolic pathways. Respiratory quotient of nutrients.	5 Hrs
	Chapter 15- Plant growth and development Phases and rate of plant growth. Condition of growth. Differentiation, dedifferentiation and redifferentiation. Sequence of developmental process in a plant cell. Growth regulators-auxin, gibberellin, cytokinin, ethylene, ABA. Photoperiodism, Vernalisation.	7 Hrs
	Unit V : Human physiology : 28 Hrs	
	Chapter 16- Digestion and Absorption - Human alimentary canal and Digestive glands. - Role of digestive enzymes - Digestion, absorption and assimilation of digested food. - Nutritional and digestive disorders Diarrhoea, Indigestion, constipation, vomiting, jaundice.	4 Hrs
ANALYSIS OF THE PROPERTY OF TH	Chapter 17- Breathing and Respiration - Respiratory organs in animals. (Recall only) - Human respiratory system Mechanism of Breathing and its regulation Exchange of gases, transport of gases and regulation of respiration Respiratory volumes Disorders related to respiration Asthma, Emphysema, Occupational respiratory disorders.	
A CONTRACTOR OF THE PROPERTY O	Chapter 18- Body fluids and Circulation - Composition of blood, Blood groups, Coagulation of blood. - Confposition and functions of Lymph. - Human circulatory system. - Structure of human heart and blood vessels. - Cardiac cycle, Cardiac output, ECG. - Double circulation. - Regulation of cardiac activity. - Disorders of circulatory system Hypertension, Coronary artery disease. Angina pectoris, heart failure.	5 Hrs
	Chapter 19- Excretory products and their elimination - Modes of excretion — Ammonotelism, ureotelism, uricotelism. - Human excretory system-structure and function. - Urine formation, Osmoregulaion. - Regulation of kidney function, Renin-angiotensin, Antinatriuretic factor, ADH and Diabeters insipidus. - Disoders — Uraemia, Renal failure, Renal calculi and Nephritis. - Dialysis.	4 Hrs

	Chapter 20- Locomotion and Movement - Types of movement ciliary, flagellar, muscular. - Sketetal muscle - contractile proteins and muscle contraction. - Sketetal system to be studied in practical. - Disorders of muscular and sketetal system Myasthenia gravis. Tetany,	5 Hrs	
ļ	Muscular dystrophy, Arthritis, Osteoporosis and Gout.		
	Chapter 21 - Neural control and coordination. - Human nervous system. Central Nervous system, Peripheral Nervous system and Visceral Nervous system. - Structure of a neuron.	6 Hrs	
	 Generation and conduction of nerve impulse. Reflex action. Chemical coordination and regulation Endocrine glands and hormones. Human endocrine system Hypothalamus, Pituitary, Pineal, Thyroid, Parathyroid, Thymus, Adrenal, 	6 Hrs	
	Pancreas, and Gonads Hormones of heart, kidney and gastro-intestinal tract Role of hormones as messengers and regulators.		

•

Design of Question Paper

Class: LPUC

Subject : Biology

Code: 36

Time: 3Hours 15 Minutes(of which minutes for reading the questions Paper).

Max.Marks:70

The weightage of the distribution of marks over different dimensions of the question paper shall be as follows:

A. Weightage to Objectives:

Objective .	Weightage	Marks
- " *	%	•
Knowledge	40%	42
Understanding	30%	33
Application	15%	15
Skill	15%	15

Note: 1% or 2% variation is allowed per objective.

B. Weightage to the unit/chapter

Unit	Chapter No	Description	No of Hours	Marks	Total Marks
W-1	1	Living World	3	3	
	2	Biological Classification	2	2] 17
•	3	Plant Kingdom	6	5	-
	4	Animal Kingdom	8	7	
	5	Morphology of Flowering Plants	5	.1	
11	6	Anatomy and flowering plants	4	4] 15
	7	Structural Organization in Animals	8	7	7
	8	Cell-the unit of life	10	8	
111	9	Biomolecules	3	5	18
	10	Cell cycle and Cell division	4	- 5	
	11	Transport in Plants	7	6	_
	12	, Mineral Nutrition	7	6	27
IV	13	Photosynthesis in Higher Plants		5 1	
* •	14	Respiration in Plants	5	5	_
	. 15	Plant growth and development	7	5	
	16	Digestion and Absorption	4	3	
	17	Breathing and Exchange of gases	4	3	
	18	Body fluids and circulation -	5	4]
·V	19	Excretory products and their elimination	4	3.	28
	20	Locomotion and movement	5	4	J
	21	Neural control and co-ordination	6	5	
	22	Chemical co-ordination and integration	6	6	
***************************************	144 T Pilegi TM 10 T-10 (p. 100 m. qq. 1 t. qq.	Total	120		105

Note: Variation of one mark per chapter/unit is allowed. However the total marks should not exceed 105.

C. Weightage to forms of questions

Part	Type of questions	Main	Number of question to be set	Number of question to be answered	Units to be covered
A	1 mark –Very short answer(VSA)		10	10	Units)
В	2 marks –short answer(SA1)		-3	5	un 50)
C	3 marks –short answer(SA2)	*	8	S	; ;
D	5 marks -long	Sec-I	06	04	I Units
	answer(LA)	Sec-H	05	. 03	T

D. Weightage to level of difficulty:

Level -	Weightage%	Marks	
Easy	40%	28	
Average	40%	28:	
Difficult	20%	14	

General instructions

مع بزيا

- Questions should be clear, unambiguous understandable and free from grammatical errors.
- Questions which are based on same concepts, law, fact etc. and which generate the same answer should not be repeated under different forms (VSA.SA and LA).

MODEL QUESTION PAPER SUBJECT: BIOLOGY (36)

									15	year f	<u>טטי</u>				,		ngder o o		,				·
UNIT ON	Tinu	TEACHIN G HOURS	KI	NOW	LEDO	GE	UN	APPLICATION/ EXPRESSION/ APPRECIATION SKILL		1 1 1						Q	TO:	s	MARKS WEIGHTAGE				
	1 ⁶¹ PUE	120	1M	2M	314	SM	1М	2M	31/1	5M	1111	2M	3M	514	ıM	215/1	ME	5M	1Mt	2:1/1	эм	SM	
	DIVERSITY OF LIVING ORGANISMS	19	1	1		1		1	-	1		-	,						L	2	1	2	18
11	STRUCTURAL ORGANIZATION IN PLANTS ANIMALS	17	1		1	· ·	1	1	And the second s				· 1·					1	2	1	2	١	- 15
III	CELL STRUCTURE AND FUNCTION	19			,	1	-	-		1	1	•		,		1	-	,	2	1	1	2	17
IV	PLANT PHYSIOLOGY	31	2	1		1	-			2		-	-	1			3		7	1	3	đ	27
w	HUMAN PHYSIDLOGY	34	2	,	1	3	1	,	1	1		-	1	-	-	:	-	ı	3	3	3	1	28
	James and Anthropology of the Control of the Contro	120).% nark	s			10% marks	• •			% arks		,		5% nark:	s	10	08	08	11	105

NOTE:

- 1) The question paper must be prepared based on the individual blue print on the basis of weightage of marks fixed for each chapter.
- 2) A variation of 1% per objective weightage is allowed. 3) A variation of 1 mark per unit/chapter is allowed. However, the total marks should not exceed 205 marks. 4) At least one question each carrying 1 mark, 2 marks, 3 marks and 5 marks have to be derived from each unit. 5) When a question carrying 5 marks is divided into sub-questions (3+2/2+2+1), the sub-questions have to be derived from the same chapter. 5) When a question carrying 5 marks is divided into sub-questions, the sub-questions have to be derived from different tooirs of the same chapter.

BLUE PRINT 1⁵¹ YEAR PUC -SUBJECT: BIOLOGY (36) CHAPTER-WISE WEIGHTAGE

							СН	APT	ER-	VISE	WE	IGH.	TAG	Ε												·
UMIT NO	HOUAS	CHAPTER	нося		К	NOV	/LEDG	E	ับท	DERST	AND	DNI			ATION IATIO			SK	n,ı.			10	TAL		TOTAL	REMARKS
, ,,,,,				UNIX	1141	ZM	3M1	5 M	130	21M	31,3	5M	1M	2M	· 2M	5M	IM	2345	3M	SM	1M	2M	3M	5M		
UIMT I	DIVERS	ITY OF LIVING DRGANISMS	***************************************		********		•													******				•		
		1.LIVING WORLD	3		1	١.	<u> </u>	. •			-	-	٠		1		` '		,		1		1	Ŀ	4	<u> </u>
4	19	2.9IOLOGICAL CLASSIFICATION	5	18		1					-	- 1		-		-			-		1 -	11] :		2	·
1 4	13	3.PLANT KINGDOM	6	10	-	-		1	-	-	-	١.,			<u> </u>	-	-				<u> </u>		<u>.</u>	1	5	
		4.Anmal Kingdom	8		,		٠.		<u> </u>	1		1	-		_	- 1	-	-	-		-	1	<u> </u>	1	7	
UNI	F 11.STF	RUCTURAL ORGANIZATION IN PL	ANTS /	anim,			•				g1124 1- 0-0 1	del committee	o w wo			-		,				p-	·	·		•
		5.MORPHOLOGY OF FLOWERING PLANTS	5		<u>1</u>	1 —	<u> </u>					L-	-		-						1		1	_	4	
11	17	6.ANATOMY OF FLORWIRING PLANTS	4	15	-	<u> </u>	-		1			L.		Holomoro	1.		-		, -		1		1	<u>L.</u>	4	
		7 STRUCTURAL ORGANISATION IN ANIMALS	8		-			-		1		-	-	-				-		1		1	-	1	7	
UNI	I III.ČE	LL STRUCTURE AND FUNCTION	d		· • • • • • • • • • • • • • • • • • • •	d			d	A		Arram			سسد يو			٠.								*
		B.CEE-THE UNIT OF UPE	10		; 1	T -	-	٦.	-	Ţ -	T -	-			-		. •	1			1	1	1 -	1	8	
1)1	19	9.BIOMOLECULES	5	17	1 -	1 .				-		1	*	,		•	Ar of the	1		1 ."	1.			1	5	ļ
		10,CELL CYCLE AND CELL DIVISION	4	4	-	T	1		7	-	- 1		1	-	1 -		-		-		1		1	{ -	.1	
UNI	IV.PL	ANT PHYSIOLOGY			4																					
		13 TRANSPORT IN PLANTS	7		1			•			1 -	ī			T*	-	-		: -		1		-	T)	6	
		12 MINERAL NUTRITION	7	-	1		-	. 1	-		-	-	-	-	,	: -	-		-	-	1		T -	1	6	
IV	31	13. PHOTOSYPITHESIS IN HIGHER PLANTS	5	27						-	T -	1				٠.		1 -		•		•	-	1	5	
	i	14.RESPIRATION IN PLANTS	5	•				-		-	-] -	-		-		^	}		. 3	-	-	-	1	5	
	ı	15.PLANT GROWTH AND DEVELOPMENT	7		-	i t] -	1 -	. 4	T .		. •		ī -		-	-	1			1	1	<u> </u>	5	
UNF	T V.HL	MAN PHYSIOLOGY																								
	:	16.DIGESTION AND ABSURPTION	4		-	-	٠.		7.	+ ,	1	-			-		-		-	-	-	· ·	1	•	3	
		17.BREATHING AND EXCHANGE OF GASES	4		1	7 -			-	1	-	•	-			•	-		-		1	; 1	7	T	3	
	4	18.BODY FLUICS AND CIRCULATION	5		1	-		7		1.	-	1			1	-		and the same	-		1	!	1	Ī	4	
		19.EXCRETARY PRODUCTS AND THEIR	4		١.	-		٠.	1	. 1	-		1				i "				1	i	1	ſ.,	3	1
A	34	20,LOCOMOTION AND MOVEMENT	5	7 28		1	1		; .	1.	1 .	+ .	<u>:</u>	-	.		 	1 .			+-		1	1-	4	
	:	23 NEURAL CONTROL AND CO	· } · · · · · ·	-	7-	一			- 	ļ	-	-	}	1	·•			i		- :			+:	1		
		GRODINATION	6						;			1		. .	-+	1 .	. •			. "	`	•	1.	1	. 5	
	1	12.CHEMICAL CORDINATION AND INTEGRATION	6		-		-	1	:	-	-	-			-		:						-	1	5	
	120	TOTAL	120	105	i					7		1	ofame .				1				ic	8	8	13	105	
					d	٠		*****	- -		A	·	d	J			L	· •					أسمالت			- 1 Ε απισ 1

MODEL QUESTION PAPER SUBJECT: BIOLOGY (36) 1st year PUC

Time: 3 Hours and 15 minutes

Max Marks: 70

GENERAL INSTRUCTIONS:

- i) This question paper consists of four parts A, B, C and D . Part D consists of two parts, Section-I and Section-II.
- ii) All the Parts are Compulsory.
- iii) Draw diagrams wherever necessary. Untabelled diagrams or illustrations do not attract any marks.

PART-A

Answer the following questions in One Word or One Sentence each: -

10x1=10

- 1. What is a herbarium?
- 2. Give an example for palmately compound leaf.
- 3. Collenchyma is called a simple tissue. Why?
- 4. What are mesosomes?
- 5. Mention the significance of meiosis.
- 6. Define root pressure.
- 7. Name the oxygen scavenger molecule that protects nitrogenase in nodules.
- 8. What is emphysema?
- 9. Which blood group is called universal donor?
- 10. Why the filtration of blood in Bowman's capsule is referred as ultrafiltration?

PART-B

Answer any FIVE of the following questions in 3-5 sentences each, wherever applicable:

5x2=10

- 11. Write any four characters of fungi.
- 12. List any four salient features of phylum coelenterata.
- 13. Give reasons for the following:
 - a) The blood vascular system in cockroach is considered as open type.
 - b) The vision in cockroach is referred as mosaic vision.
- 14. Draw a labeled diagram of section of chloroplast.
- 15. What is vernalization? Mention any one of its importance.
- 16. Explain how the exchange of O₂ and CO₂ is achieved between alveoli and deoxygenated blood.
- 17. Explain the role of Atrial Natriuretic factor in the regulation of kidney function.
- 18. What is osteoporosis? Mention the common cause that leads to osteoporosis.

PART-C

Answer any FIVE of the following Questions in 40-80 words each, wherever applicable.

5x3=15

- 19. List the important rules of binomial nomenclature. Write the scientific name of housefly
- 20. Define the terms: i) Monoadelphous condition ii) Apocarpous condition iii) Zygomorphic flower.
- . 21. Write any three anatomical differences between dicot leaf and monocot leaf.
 - 22. Write a note on the G₀ phase of cell cycle.
 - 23. Draw the sigmoid growth curve. Write the formula to express exponential growth.
 - 24. Give a brief account of absorption of fatty acids and glycerol in small intestine.
 - 25. Explain the mechanism of coagulation of blood.
 - 26. Write a note on myosin protein.

PART-D

Section-I

Answer any FOUR of the following questions on 200-250 words each, wherever applicable.

4x5=20

- 27. Write the general characters of angiosperms.
- 28. Differentiate between chordates and non-chordates.
- 29. Draw a labeled diagram of complete digestive system of frog showing internal organs.
- 30. List the functions of plasma membrane.
- 31. Explain how the p^H and concentration of substrate affect enzyme activity with graphical representation.
- 32. Explain the physical properties of water that govern the transpiration driven ascent of sap. Explain how these properties helps in ascent of sap or transpiration pull and how a "pull" is achieved.

Section-II

Answer any THREE of the following questions in 200-250 words each, wherever applicable.

3x5=15

- 33. What are macronutrients? Describe the roles played by calcium and magnesium in plants.
- 34. Explain the events of C4 pathway. Mention any two special features of C4 plants.
- 35. Write the schematic representation of overall view of Citric Acid cycle.
- 36. Describe the events of reflex action with a diagrammatic representation of knee jerk reflex.
- 37. What are hormones? Mention one function each for i) ACTH ii) Melatonin iii) Parathyroid hormone
- iv) Thymosin.

MODEL QUESTION PAPER SUBJECT: BIOLOGY (36) 1st year PUC ANSWERS

QUE NO	ANSWERS/VALUE POINTS	MARKS	REFER PAGE NO. (IN THE TEXT BOOK)
۸	PART-A Inswer the following questions in One Word or One Sentence each: -	10x1=	=10
	What is a herbarium?	T	
1	A herbarium is a store house of collected plant materials, which are dried, pressed and preserved on sheets.	i 1mark i	11-12
2	Give an example for palmately compound leaf. Silk Cotton	1mark	71
3	Collenchyma is called a simple tissue. Why? Because, it is made up of single type of cells. OR It is a tissue made up of cells that are similar in structure and function.	1mark	86
4	What are mesosomes? Mesosomes are the special membranous structures formed by the extension of plasma membrane into the cell in prokaryotes.	1mark	128.
5	Mention the significance of meiosis. Meiosis helps in conservation of chromosomal number in each species from generation to generation. OR Meiosis helps in increasing genetic variability in the population of organisms from one generation to the next generation.	1mark	170 - 171
6	Define root pressure. The positive pressure created inside the xylem of the root due to the entry of water when there is a movement of ions into vascular tissues:	1mark	186
7	Name the oxygen scavenger molecule that protects nitrogenase in nodules. Leg-haemoglobin.	1mark	203
8	What is emphysema? A chronic disorder, in which there is a decrease in the respiratory surface due to the damage of alveolar wall mainly as a result of cigarette smoking.	1mark	275
9	Which blood group is called universal donor? "O" blood group.	1mark	280
10	Why the filtration of blood in Bowman's capsule is referred as ultrafiltration? Because almost all the constituent of plasma except proteins are filtered into the lumen of the Bowman's capsule due to the presence of small slit in the epithelial layer of Bowman's capsule.	1mark	293
	PART-B Answer any FIVE of the following questions in 3-5 sentences each, wherever applicable:	5x2	=10
11	11. Write any four characters of fungi. Characters of Fungi: i. They are heterotrophic organisms, either parasitic or saprophytic. ii. They are either unicellular (Eg. yeast), or multicellular, filamentous. iii. The body consists of long, stender, thread like structures called hyphae. iv. The network of hyphae is called mycelium. v. Some hyphae of some members are coenocytic (multinucleate). vi. The hyphae may be septate or aseptate. vii. The cell walt is composed of chitin and polysaccharide. viii. Vegetative reproduction occurs by fragmentation, fission and budding.	2	22 23

	ix. Asexual reproduction occurs by the production of spores called conidia or sporangiospore or zoospore. x. Sexual reproduction occurs by the production of oospores, ascospores or basidiospores. xi. Sexual cycle involved plasmogamy(fusion of two protoplasts), karyogamy(fusion of two nuclei) and meiosis in zygote resulting in haploid spores. xii. Presence of dikaryotic phase in some members. xiii. Formation of fruiting bodies in which haploid spores are formed after meiosis. -Any 4 characters- ½mark for each character-2marks		
12	12. List any four salient features of phylum Coelenterata. Salient features of phylum Coelenterata: i. Sessile or free swimming organisms. ii. Presence of Cnidoblasts or cnidocytes that contain nematocytes in tentacles. iii. Presence of Tissue level organization with radially symmetrical, diploblastic body. iv. Presence of gastro vascular cavity. v. Presence of calcareous exoskeleton in corals. vi. Presence of two basic body forms in some members. The body forms are Polyp and Medusa. vii. Polyp produces medusa by asexual reproduction and medusa produces polyp by sexual reproduction. -Any 4 features- ½mark for each feature-2marks	2	50 - 51
13	Give reasons for the following: a) The blood vascular system in cockroach is considered as open type. Because in cockroaches, the blood pumped by heart passes through large vessels into open spaces or large cavities called sinuses OR The blood vessels are poorly developed and open into spaces(haemocoel) -1mark b) The vision of cockroach is referred as mosaic vision. Because the cockroaches can receive several visions of an object due to the presence of several ommatidia. -1mark	 2	282 <i>i</i> 113 114
14	Stroms	2	136
th, came to the control of the contr	Sectional view of chloroplast Diagram with 4 labeling-½for each labeling-2 marks		
15	Sectional view of chloroplast Diagram with 4 labeling-½for each labeling-2 marks What is vernalization? Mention its importance. Exposure of plants to low temperature in order to promote flowering is called vernalization. -1mark	2	252

	·		
	Exchange of O ₂ and CO ₂ between alveoli and deoxygenated blood occurs by simple diffusion based		
ŀ	on pressure/concentration gradient.		273
	The PO ₂ (partial pressure of O ₂) in alveoli is 104 mmHg and the PO ₂ in deoxygenated blood is 40		
	ттНд.		
	Due to the difference in partial pressure, the O₂ from Alveoli from diffuses into deoxygenated blood.		
į	The PCO ₂ (partial pressure of PCO ₂) in deoxygenated blood is 45 mm Hg and the in alveoli are 40 mm		
	Hg. Due to the difference in partial pressure, the CO ₂ from deoxygenated blood diffuses into alveoli.		
	Write a note on Atrial Natriuretic Factor in the regulation of kidney function (ANF).		
	Atrial Natriuretic factor is a peptide hormone secreted by the atrial wall.		297
17	An increase in the blood flow to the atria of the heart can cause the release of ANF.	2	&
	ANF can cause vasodilation of blood vessels and there by decrease the blood pressure.		337
	ANF mechanism acts as a check on the rennin-angiotensin mechanism.		
	What is osteoporosis? Mention the common cause that leads to osteoporosis.		
	Osteoporosis is an age-related disorder characterized by decreased bone mass and increased chances		
4.0	of fractures.	2	312
18	-1 mark	2	312
	The most common cause is the decreased levels of estrogen.		
	-1 mark		
	PART-C		····
Ansı	wer any FIVE of the following Questions in 40-80 words each, wherever applicable.	5x3=15	
,,,,,	19. List the important rules of binomial nomenclature. Write the scientific name of housefly.		
	Rules of binomial nomenclature:		
	i. Each scientific name has two components: The first word denoting the genus and the second		_
	component represents specific epithet.		7
	ii. Biological names are generally in Latin and written in italics. They are Latinized or derived from Latin.		
	lii. Both the words in a biological name, when handwritten, are separately underlined or printed in italics to		
19	Indicate their Latin origin.	3	
,,,	iv. The first word denoting the genus starts with capital letter while the specific epithet starts with small	Ť	
	letter.		
	- ½mark for each point		
	Scientific name of housefly:		11
	Musca domestica		
	-1 mark		•
	Define the terms: i) Monoadelphous condition ii) Apocarpous condition iii) Zygomorphic flower.		
	i.Monoadelphous condition: The stamens are united into one bunch or one bundle.		į
	-1 Mark		75
	ii. Apocarpous condition: The carpels in a ovary are free/not fused.		
20	-1 Mark	3	75
	iii) Zygomorphic flower: When a flower can be divided into two similar halves only in one particular		
	vertical plane, such flower is referred as zygomorphic flower.		72
	-1 Mark		
	Write any three anatomical differences between dicot leaf and monocot leaf.		n according a showled consequent
	1. In dicot leaf, the more stomata are present on the lower (abaxial) epidermis than on the upper (adaxial)		
	epidermis. Whereas in monocot leaf, stomata are present both on upper and lower epidermis almost in		
	equal proportion.	ļ	
	2. In dicot leaf, the mesophyll is differentiated into palisade and spongy parenchyma, whereas in monocot		93
21	leaf, the mesophyll is not differentiated into palisade and spongy parenchyma.	3	•
	3. In dicot leaf, bulliform cells are not found, whereas in monocot leaf, bulliform cells are present in the		94
	upper epidermis.		
	4. In dicot leaf, the size of vascular bundles vary due to the thickness of veins since it possess reticulate		
	venation. Whereas in the monocot leaf, the parallel venation is reflected in the near similar size of		
	vascular bundles except in main vein.		
	Any three differences-1 mark for each difference	ļ	ļ
22	Write a note on the G₀ phase of cell cycle.	3	164

- 1	Chabasas			
1	G0 phase: Some cells in the adult animals ex	kit G1 phase and enter an inactive phase called quiescent state or G0		
ľ	phase of the cell cycle.	at Or pride and cities at macino prides serve queesent state of the		
		lically active. But these cells do not exhibit cell division, unless called on	Ì	
	to do so depending upon the requ			
		ly, as needed to replace cells that have been lost due to injury or cell		
	death.			
	Draw the sigmoid growth curve	. Write the formula to express exponential growth.		
ł		Stationary phase		
1	•	5		
				•
		Size furtiglis of the engan		
		#		
		Tang 1	3	243
23	·	Lag phase	3	243
	·	Tigac		
		As alkalised agenald growth		
		coree (spiral of eets in culture and many higher plants and		
1		होत्या अनुसार		•
		-2 marks		
	Formula to express exponential g	Komiui		
.	AX AAG6	-1 mark	•	
	Give a brief account of absorpt	tion of fatty acids and glycerol in small intestine.		
-		ible, hence cannot be absorbed into the blood. They are first		
		called micelles. Micelles move to intestinal mucosa, where they are		ļ
4	reformed into very small protein o	· · · · · · · · · · · · · · · · · · ·	1 2	200
		coated globules called chylomicrons.	.3	265
	Chylomicrons are transported into	coated globules called chylomicrons. o lymph vessels in villi and Lymph vessels release these absorbed	.3	265
	Chylomicrons are transported into substances into blood stream.	o lymph vessels in villi and Lymph vessels release these absorbed	.3	265
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coac	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood.	3	265
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the	o lymph vessels in villi and Lymph vessels release these absorbed	3	265
15	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coact An injury or trauma stimulates the coagulation.	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the		
25	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enz	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood.	3	265
?5	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin.	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active		
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and		
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin.	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting.		
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role Write a note on myosin protein	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting.		
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive fibring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contractiproteins called meromyosins are	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It it is protein present in skeletal muscle. In myosin, many monomeric present.		
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contractiproteins called meromyosins are Each meromyosin has two parts,	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. 1. tile protein present in skeletal muscle. In myosin, many monomeric	3	281
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role. Write a note on myosin protein Myosin is a polymerized contraction proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM).	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail		281
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role. Write a note on myosin protein Myosin is a polymerized contractiproteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outware.	o lymph vessels in villi and Lymph vessels release these absorbed gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail ards at regular distance from each other from the surface of a	3	281
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive fibring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contracti proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outwo polymerized myosin and it is called	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail ands at regular distance from each other from the surface of a ed-cross arm. The globular head is an ATPase enzyme and it has	3	
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role. Write a note on myosin protein Myosin is a polymerized contractiproteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outware.	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail ards at regular distance from each other from the surface of a ed cross arm. The globular head is an ATPase enzyme and it has ite for action.	3	281
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive fibring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contracti proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outwo polymerized myosin and it is called	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It tile protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail ands at regular distance from each other from the surface of a ed-cross arm. The globular head is an ATPase enzyme and it has ite for action. PART-D	3	281
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contract proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outword polymerized myosin and it is called binding site for ATP and active site.	gulation of blood. e platelets in the blood to release certain factors that activate the cyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail ards at regular distance from each other from the surface of a ed cross arm. The globular head is an ATPase enzyme and it has ite for action. PART-D Section-I	3	306
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive libring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contracti proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outwo polymerized myosin and it is called binding site for ATP and active si	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present, a globular head with a short arm (heavy meromyosin-HMM) and a tail ards at regular distance from each other from the surface of a ed-cross arm. The globular head is an ATPase enzyme and it has ite for action. PART-D Section-I ving questions on 200-250 words each, wherever applicable.	3	306
	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive fibring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contractiproteins called meromyosins are Each meromyosin-LMM). The head and short project outword polymerized myosin and it is called binding site for ATP and active site. Answer any FOUR of the follow 27. Write the general character	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It tile protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail pards at regular distance from each other from the surface of a ed-cross arm. The globular head is an ATPase enzyme and it has ite for action. PART-D Section-I ving questions on 200-250 words each, wherever applicable.	3	281
26	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive fibring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contraction proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outward polymerized myosin and it is called binding site for ATP and active site. Answer any FOUR of the following 27. Write the general character General characters of angiosperices.	gulation of blood. e platelets in the blood to release certain factors that activate the exyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It tile protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail pards at regular distance from each other from the surface of a ed-cross arm. The globular head is an ATPase enzyme and it has ite for action. PART-D Section-I ving questions on 200-250 words each, wherever applicable.	3	281
25 26 27	Chylomicrons are transported into substances into blood stream. Explain the mechanism of coag An injury or trauma stimulates the coagulation. They activate thrombokinase enzithrombin. Thrombin converts inactive fibring Ca++ ions play an important role Write a note on myosin protein Myosin is a polymerized contraction proteins called meromyosins are Each meromyosin has two parts, (Light meromyosin-LMM). The head and short project outward polymerized myosin and it is called binding site for ATP and active site. Answer any FOUR of the following 27. Write the general character General characters of angiosperices.	gulation of blood. e platelets in the blood to release certain factors that activate the zyme. Thrombokinase enzyme converts inactive prothrombin to active ogen to active fibrin. Fibrin forms the clot in the form of a network and in clotting. It is protein present in skeletal muscle. In myosin, many monomeric present. It is a globular head with a short arm (heavy meromyosin-HMM) and a tail ands at regular distance from each other from the surface of a ed-cross arm. The globular head is an ATPase enzyme and it has ite for action. PART-D Section-I ving questions on 200-250 words each, wherever applicable, rs of angiosperms. ms: g plants in which pollen grains and ovules are developed in flowers.	3 4x5=	281

	iv. The female sex organ is pistil that consists of ovar v. Each embryo sac has 3-celled egg apparatus, one polar nuclei. vi. Pollen grains are transferred to the stigma through vii. One male gamete fuses with the egg cell to form a viii. Another male gamete fuses with diploid secondar nucleus (Triple fusion). The fusion of two male gamet is called double fertilization. viii. The zygote develops into embryo (with one or two ix. The primary endosperm nucleus develops into embryo. x. The ovules develop into seed. xi. The ovaries develop into fruit. Differentiate between chordates and non-chordates.	egg cell and two synergids, 3 antipodals and two a process called pollination. zygote (syngamy). ry nucleus to form triploid primary endosperm tes with the two different components of embryo sac a cotyledons). dosperm that provides nourishment to the developing -Any 10 characters-½marks for each character		
	CHORDATES	NON-CHORDATES		
	1. Notochord is present	1.Notochord is absent	-	
	Central nervous system is dorsal, hollow and single	Central nervous system is ventral, solid and double.	-	
28	3. Pharynx perforated by gill slits.	3. Gill slits are present.	5	⁄55
	4. Heart is ventral	4. Heart is dorsal (if present).		
	5. A post anal part(tail) is present	5. Post anal tail is absent.		
	* . *	-One mark for each difference		
29	Draw a labeled diagram of complete digestive s	ystem of frog showing internal organs.	5	116

,		·····	
	Liver Ling Liver Ling Finance Fina		
	List the functions of plasma membrane.		
30	Functions of plasma membrane: i. Passive transport: Movement of molecules across the membrane without the expenditure of energy. ii. Diffusion: Movement of substances like neutral solutes across plasma membrane along the concentration gradient. lii. Osmosis: Movement of water molecules across the membrane along the concentration gradient.	5	132
	iv. Facilitated transport: Movement of polar molecules with the help of carrier proteins of the membrane		
	to facilitate their transport across the membrane. v. Active transport: Movement of ions or molecules across the concentration gradient with the		- 1
	expenditure of energy.		
	-One mark for each function		
	Explain how the PH and concentration of substrate affect enzyme activity with graphical representation. Effect of PH on enzyme activity: Enzymes generally function in a narrow range of PH. Each enzyme shows its highest activity at a particular PH called optimum PH. Activity decreases both below and above optimum value.	-	
		:	
	[a]		
	<u>×</u>		157
31	<u>*</u>	5	-
			168
	Enzyme activity		
	<u> </u>		
4			
	pl l		
	-1 mark for explanation and 1 mark for graphical representation		
	Effect of concentration of substrate on enzyme activity:	<u> </u>	

	With the increase in substrate concentration, the velocity of enzymatic reaction raises at first. The		
	reaction ultimately reaches a maximum velocity (V _{max}) which is not exceeded by further raise in the concentrate of substrate.		
	boricerinate or equations.		
	Vmax		ŀ
	(c)		1
	$\Sigma \mid \Omega \rangle$		
	Welocity of reaction (V)		
İ	17		
	$\frac{V_{\text{max}}}{2}$		
	2 5 /		Ī
) /		***************************************
	K.,, [S]		
	-111		
-	-1 mark for explanation and 2 mark for graphical representation Explain the physical properties of water that govern the transpiration driven ascent of sap. How		
32	these properties help in ascent of sap or transpiration pull and how a "pull" is achieved? The transpiration driven ascent of xylem sap depends mainly on the following physical properties of water: **Cohesion – mutual attraction between water molecules. **Adhesion – attraction of water molecules to polar surfaces (such as the surface of tracheary elements. **Surface Tension – water molecules are attracted to each other in the liquid phase more than to water in the gas phase. 1½ marks These properties give water high tensile strength, i.e., an ability to resist a pulling force, and high capillarity, i.e., the ability to rise in thin tubes. In plants capillarity is aided by the small diameter of the tracheary elements – the tracheids and vessel elements. 1½ marks The process of photosynthesis requires water. The system of xylem vessels from the root to the leaf vein can supply the needed water. As water evaporates through the stomata, since the thin film of water over the cells is continuous, it results in pulling of water, molecule by molecule, into the leaf from the xylem. Also, because of lower concentration of water vapour in the atmosphere as compared to the substomatal	5	188
	cavity and intercellular spaces, water diffuses into the surrounding air. This creates a 'pull' and helps in ascent of sap. 2 marks		
	Section-II		
	Answer any THREE of the following questions in 200-250 words each, wherever applicable. 3x5 What are macronutrients? Describe the roles played by calcium and magnesium in plants.	>=15	T
	Micronutrients are those elements which are needed/present in large amounts, i.e., in excess of 10 m		
	mole Kg ⁻¹ of dry matter.		196
33	-1 Mark	5	
	Role of calcium: Calcium is required by meristematic and differentiating tissues. During cell division, it is used for the synthesis of cell wall, particularly middle lamella.	_	197
	Calcium is also needed for the formation of mitotic spindle.		

	Calcium is involved in the normal function of cell membrane.		
	Calcium activates certain enzymes and plays an important role in regulating metabolic activities.		ĺ
	-any four roles-½mark for each role-2 marks		
	Role of magnesium:		1
	i. Magnesium activates the enzyme of respiration and photosynthesis.		
	ii. Magnesium is involved in the synthesis of DNA and RNA.		1
	iii. Magnesium is needed for chlorophyll-as a component of ring structure.		1
	iv. Magnesium is needed to maintain ribosome structure.	i	1
	- Four roles-1/2 mark for each role-2 marks		1
	Explain the events of C4 pathway. Mention any four special features of C4 plants.		
	Steps involved in C4 pathway:		
	CO2 fixation: Phosphoenol pyruvate(PEP), a three carbon molecule present in the mesophyll cells,		1
	accepts a molecule of CO2 and forms a 4-carbon compound oxaloacetic acid(OAA). This reaction is		ľ
	catalyzed by the enzyme PEP carboxylase or PEPcase.		·
	Conversion of OAA: OAA then forms 4 carbon compounds like malic acid or aspartic acid in the		
	mesophyll. Then Malic Acid is transported into bundle sheath cells.		_
	Decarboxylation: In the bundle sheath cells, CO2 released and CO2 enters into C3 or Calvin pathway.		
	Regeneration of PEP: The PEP released during decarboxylation is transported back to mesophyll cells		218
24		5	2.0
34	where it participates in CO2 fixation process3 marks	J	23221
	**		20221
1	Special features of C4 plants:		
	i. They have special type of leaf anatomy, where they have large bundle sheath cells with large number of		
	chloroplasts and thick wall and without intercellular spaces.	1.1	
	ii. The C4 plants can tolerate higher temperatures.		1
	iii. They show response to high light intensities.		.
	iv. They lack a process called photorespiration.		
	v. They have the ability of greater productivity of biomass.		-
-	-Any four such features-1/2 marks for each feature-2 marks		
-	Write the schematic representation of overall view of Citric Acid cycle.		
	Write the schematic representation of overall view of Gitte Acid cycle.		
			-
1	Pyrtwate		
	$coa = \frac{(3C)}{3} NAD$		
1	NADD+II		
	2 200		
	Acetyl coenzyme A		
	(20)		
	Challingerette 13510]		
	(4C) Cirre acid		
35	NADCHIF (6C) CO ₂	5	232
	NAD: -/ NADH-41		
	n kenghiaric , etd		
	Matic acid (50)		
	(4C) CTIRIC ACID CYCLE ;		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	FADIL NAD		
	FAD Succinic acid GDF		-
	FAD Succime acid GDF		
	福建	ļ	-
	The Citric acid cycle		
	THE CHER BERE CHEE		-
		<u> </u>	

<u>-</u>			<u> </u>
	Describe how the events of reflex action occur with a diagrammatic representation of knee jerk reflex. The reflex action pathway comprises of following events. The stimulus is received by a receptor (eg. muscle spindle). Afferent neuron receives signals from this sensory organ and transmits the impulse via a dorsal nerve root into the CNS (at the level of spinal cord). The efferent neuron then carries the signals from CNS to the effectors. The stimulus and response thus forms a reflex arc. -2 marks Diagrammatic representation		
36	Muscle spindle (receptor) Motor endplate Efferent pathway Motor metical pathway Motor m	5	322
	Diagrammatic presentation of reflex notion (showing knee jerk reflex) Simplified diagram with proper labels -3 marks		
37	What are hormones? Mention one function each for i) Adreno Cortico Trophic Hormone ii) Melatonin Iii) Parathyroid hormone iv)Thymosin Hormones are non-nutrient chemicals which act as intercellular messengers and are produced in trace amounts. -1mark i. Adrenocorticotrophic hormone: ACTH stimulates the synthesis and secretion of steroid hormones called glucocorticoids from the adrenal cortex. ii. Melatonin: Melatonin plays a very important role in the regulation of a 24-hour (diurnal) rhythm of our body. Melatonin helps in maintaining the normal rhythm of sleep-wake cycle. Melatonin helps in maintaining the normal body temperature. Melatonin also influences metabolism Melatonin also influences metabolism Melatonin also influences pigmentation Melatonin also helps in maintaining the menstrual cycle as well as our defense capacity iii.Parathyroid hormone: Parathyroid hormone increases the Ca²+ levels in the blood. Parathyroid hormone acts on bones and stimulates the process of bone resorption/dissolution/demineralization. Parathyroid hormone also stimulates the reabsorption of Ca²+ by the renal tubules and increases CA²+absorption from the digested food. Parathyroid hormone, along with thyrocalcitonin, plays a significant role in calcium balance in the body. iv. Thymosin: Thymosin plays a major role in the differentiation of T-Lymphocytes which provide cell-mediated immunity. -Any one function for each horomone-1mark each-4 marks		332

BIOLOGY (THEORY): MODEL QUESTION PAPER - 2

BLUE PRINT FOR SUNIMATIVE ASSESSMENT (UNIT WISE WEIGHTAGE)

	<	V	=	=	-		ÓΝ LINΩ	Time:
	HUMAN PHYSIOLOGY	PLANT PHYSIOLOGY	CELL STRUCTURE AND FUNCTION	STRUCTURAL ORGANIZATION IN PLANTS ANIMALS	DIVERSITY OF LIVING ORGANISMS		TINU	Time: 3 Hours and 15 minutes
120	34	31	19	17	19	120	Teachin G hours	
	2	4*	2	μ.	1	1M		
40 42 n	1	-	1		2	2M	WOW	
40 % 42 marks	3		1			МE	KNOWLEDGE	
				-	1	5M	m	
						1M		
33		ь			ь	2M	JNDER	
30% 33marks	-	2		1		3M	UNDERSTANDING	PUC
	2*	-	L			5M	NG	
		_	1	ь		1M	A	
15 15n					-	2M	PPLIC/ PPREC	
15 % 15marks		<u>,,</u>			ь	3M	APPLICATION/ APPRECIATION	
		—				5М		
						18	EXPR	
15_1						2M	EXPRESSION/ SKILL	
15% 15 marks		-				3M	N/ SR	
01	14		<u> </u>	ь		5M	Ë	Max
10	ω	2	ω	2	ь	1M	707	mum
08	ω	2	н		4	 	AL Q	Mar
80	ω	2	щ	ь	-	2M 3M	TOTAL QUESTIONS	Maximum Marks: 70
11	2	3	2	2	₩	5M	SNO	J
105	28	27	18	15	17		MARKS WEIGHTAGE	

NOTE:

- The question paper must be prepared based on the individual blue print on the basis of weightage of marks fixed for each chapter.
 A variation of 1% per objective weightage is allowed.
- 3) A variation of 1 mark per unit/chapter is allowed. However, the total marks should not exceed 105 marks.
- 4) At least one question each carrying 1 mark, 2 marks, 3 marks and 5 marks have to be derived from each unit.
- 5) When a question carrying 5 marks is divided into sub-questions (3+2/2+2+1), the sub-questions have to be derived from the same chapter.
- 6) When a question carrying 5 marks is divided into sub-questions, the sub-questions have to be derived from different topics of the same chapter.
- 7)* Split questions

BIOLOGY (THEORY): MODEL QUESTION PAPER-2
BLUE PRINT FOR SUMMATTIVE ASSESSMENT (CHAPTER WISE WEIGHTAGE)

Time: 3 Hours and 15 minutes MAR KNOWLEDGE UNDERSTANDING APPLICATION/ SKIL TOTAL Maximum Marks: 70 TOTAL

UNIT	HOUR	CHARTER	S H O H	Š	~	KNOWLEDGE	EDGE		S	DERST/	UNDERSTANDING	<u> </u>	₽ 2	APPRECIATION	APPRECIATION			SKILL	F			TOTAL	A		MARKS
N O	v	(1)	RS	PER PER	ž	2M	3M	5M	ž	2 8	Mε	Z Z	ž	28	3M	5M	ž	ΣM	ΣE	28	M	2M	3M	SM	
-I TINU	DIVERSIT	UNIT I-DIVERSITY OF LIVING ORGANISMS		٠																					
		1.LIVING WORLD	ω		_	1			.		-	<u> </u>		<u></u>		_	<u> </u>	L			۳	1			ω
-	;	2.BIOLOGICAL CLASSIFICAITON	2	,		-		_														1			2
_	19	3.PLANT KINGDOM	<u></u>	ō								-		1	1							1	1		5
		4.ANIMAL KINGDOM	œ					1		1			ļ,									-		4	7
UNIT II.	-STRUCTU	UNIT II-STRUCTURAL ORGANIZATION IN PLANTS AND ANIMALS	5								٠.														
		S.MORPHOLOGY OF FLOWERING PLANTS	2		1						ш										1		_		4
=	17	6.ANATOMY OF FLOLWERING PLANTS	4	5							·									-				-	5
	!	7.STRUCTURAL ORGANISATION IN	00					Н					<u> </u>			,					-				6
UNIT	-CELL STI	UNIT III-CELL STRUCTURE AND FUNCTION					-																		
		8.CELL-THE UNIT OF LIFE	16		μ	ь						-	-							1	2	1		-	9
Ξ	19	9.BIOMOLECULES	7.1	17	ı		1										<u> </u>	<u>.</u>			1		1		4
		10,CELL CYCLE AND CELL DIVISION	4		ļ				_			1												-	4
U TINU	-PLANT	UNIT IV-PLANT PHYSIOLOGY																							
		11.TRANSPORT IN PLANTS	7		-							4									1			4	6
		12.MINERAL NUTRITION	7		ω *							_			1*						1			1*	6
₹	31	13, PHOTOSYNTHESIS IN HIGHER PLANTS	'n	27														<u> </u>						1	5
		14.RESPIRATION IN PLANTS				1					-											1	1		5
•	•	15.PLANT GROWTH AND DEVELOPMENT	7							-	-			_	L.							Ľ			5
UNITV	-HUMAN	UNIT V-HUMAN PHYSIOLOGY											1		ľ										
		16.DIGESTION AND ABSORPTION	4				-										_						1		a
		17.BREATHING AND EXCHANGE OF GASES	4				ш					_					ļ <u>.</u>	ļ					1		ω
		18.BODY FLUIDS AND CIRCULATION	и					<u> </u>				-	_											-	5
<	بر 4	19.EXCRETORY PRODUCTS & ELIMINATION	4	28			1			_				<u> </u>									-	_	w
•		20.LOCOMOTION AND MOVEMENT	5		۲	ь.															ь	-			w
		21.NEURAL CONTROL & CO-ORDINATION	6																	ш				_	5
		22. CHEMICAL CO-ORDINATION AND INTEGRATION	6		۲							1									L			-	6
	120	TOTAL	120	105														L			8	œ	00	l	105
										- :															

MODEL QUESTION PAPER - 2 SUBJECT: BIOLOGY (36)

IPUC

Time: 3 Hours and 15 minutes

Maximum Marks: 70

GENERAL INSTRUCTIONS:

- i) The question paper consists of four parts A, B, C and D. Part D consists of two parts, Section-I and Section-II. Part A contains of 10 questions of one mark each, Part B is of 8 questions of two marks each, Part C is of 8 questions of three marks each, Part D Section I is of 6 questions of five marks each and Part D Section II is of 5 questions of five marks each.
- ii) All the parts are Compulsory.
- iii) Draw diagrams wherever necessary. Unlabelled diagrams or illustrations do not attract any marks.

PART - A

Answer the following questions in one word or one sentence each: $10 \times 1 = 10$

- 1. What is herbarium?
- 2. Define venation.
- 3. "Earthworms are called friends of farmers". Justify the statement.
- 4. What are chromoplasts?
- 5. Name the organic compounds (non-protein constituent) present in certain enzymes that are tightly bound to the apoenzyme.
- 6. Why are mitochondria called "power houses of the cell"?
- 7. Define osmosis.
- 8. Name the essential element that is present in chlorophyll.
- 9. Name the red coloured oxygen storing pigment present in muscles.
- 10. Mention the hormone that regulates 24-hour (diurnal) rhythm of human body.

PART - B

Answer any FIVE of the following questions in 3 - 5 sentences each, wherever applicable: $5 \times 2 = 10$

- 11. Mention two rules of binomial nomenclature.
- 12. Write any two classes of Kingdom Fungi with one example for each class.
- 13. (a) Why bryophytes are called amphibians of the plant kingdom?
 - (b) Cycas is considered as a naked seeded plant. Give a scientific reason.
- 14. Write two differences between cartilaginous and bony fishes.
- 15. List two functions of Golgi bodies.
- 16. Define respiratory quotient. Write the RQ value for glucose.
- 17. Differentiate long day plants and short day plants.
- 18. Mention two types of movements exhibited by the cells of human body with an example for each.

PART - C

Answer any FIVE of the following questions in 40 - 80 words each, wherever applicable: $5 \times 3 = 15$

- 19. Schematically represent the haplontic life cycle in plants.
- 20. Explain any three types of aestivation in flowering plants.

- 21. Differentiate homopolymers and heteropolymers (polysaccharides) with an example each.
- 22. Write the schematic representation of steps involved in the formation of ethyl alcohol during fermentation of glucose.
- 23. Write about any three disorders of the digestive system.
- 24. What is: (a) Tidal volume (b) Residual volume (c) Vital capacity?
- 25. How are differentiation, dedifferentiation and redifferentiation different from each other?
- 26. Classify the animals with an example each based on the chief excretory product produced in them.

PART - D

Section -I

Answer any FOUR of the following questions in 200 - 250 words each, wherever applicable: $4 \times 5 = 20$

- 27. List five characteristic features of birds.
- 28. Describe the important events that occur during anaphase and telophase of mitosis.
- 29. Draw a labelled diagram showing the anatomy of the leaf of a typical monocot plant.
- 30. (a) Carbon, nitrogen, phosphorous, sulphur, calcium, etc, are considered as essential elements. What are the criteria for considering them as essential? (3)
 - (b) What is the role of leg-haemoglobin in leguminous plants? (1)
 - (c) Name a soil bacterium which helps in nitrification. (1)
- 31. Write the schematic representation of Calvin cycle.
- 32. Mention one function each of the following hormones:
 - (a) ADH (b) Thymosin (c) Glucagon (d) Atrial natriuretic factor (e) Erythropoietin

Section -II

Answer any THREE of the following questions in 200 - 250 words each, wherever applicable: $3 \times 5 = 15$

- 33. Draw a labelled diagram showing the ultrastructure of a plant cell.
- 34. Classify simple epithelium and mention the structural modifications of cells in them.
- 35. Explain pressure flow hypothesis of translocation of organic solutes.
- 36. (a) Explain the mechanism of clotting of blood. (3)
 - (b) Differentiate pulmonary and systemic circulations. (2)
- 37. Draw a labelled diagram of the human brain in sagittal section.

MODEL QUESTION PAPER (THEORY) -2

SUBJECT: BIOLOGY (36)

IPUC

Scheme of Evaluation

Q. No.	ANSWER	MARKS
	PART – A	
1	Storehouse of collected plant specimens that are dried, pressed and	
ļ	preserved on sheets	1
2	Arrangement of veins and veinlets in the leaf lamina	1
3	Make burrows in the soil and make it porous which helps in respiration and	_
ŀ	penetration of the developing roots.	
	They increase the fertility of soil through their worm castings.	_
	ANY ONE	1
4	Plastids containing fat soluble carotenoid pigments / pigments other than	
	chlorophyll	1
5 .	Prosthetic group	1
6	Produce cellular energy in the form of ATP	1
7	Diffusion of water across a differentially or semi-permeable membrane	1
8	Magnesium / Mg	1
9	Myoglobin	1
10	Melatonin	1
	PART – B	
11	Rules of binomial nomenclature:	
	Name should be in Latin or Latinised irrespective of their origin.	
	The first word represents genus and the second component, the species.	
	Both the components of the name are printed in italics or underlined.	1
	separately when handwritten.	
'	The genus name should start with capital letter and the species name	
	should start with small letter.	
	ANY TWO → 2 x 1	2
12	Classes of Fungi and examples:	
	Ascomycetes → Yeast (Saccharomyces) / Penicillium / Aspergillus /	
	Claviceps / Neurospora	
	Basidiomycetes → Agaricus (mushroom) / Ustilago (smut) / Puccinia (rust)	
	fungus)	
	Phycomycetes → Mucor / Rhizopus (bread mould) / Albugo	
	Deuteromycetes → Alternaria / Colletotrichum / Trichoderma	1
	MENTIONING OF TWO CLASSES → 2 X ½	1
	ONE EXAMPLE EACH FOR THE MENTIONED CLASS → 2 X ½	1
13	(a) Bryophytes can live in soil but require water to complete sexual	
	reproduction.	1

	(b) Ovules are not enclosed by any ovary wall and remain exposed.	1
14	Differences between cartilaginous and bony fishes:	
	CARTILAGINOUS FISHES BONY FISHES	
ļ	Mouth is ventrally located Mouth is terminally located	
	Operculum absent Operculum covers the gills	
	Air bladders absent Air bladders present	
ľ	Males have claspers Claspers absent	
	Fertilisation is internal Fertilisation is usually external	
	Mostly viviparous Mostly oviparous	
	ANY TWO DIFFERENCES: 2 x 2	L 2
15	Functions of Golgi bodies:	
	Packaging of materials produced by ER	
	Modification of proteins synthesised by ribosomes	
	Site of formation of glycoproteins and glycolipids	
<u> </u>	ANY TWO FUNCTIONS: 2 x	1 2
16	Respiratory quotient:	
·	Ratio of volume of CO ₂ evolved to the volume of O ₂ consumed it	n 1
	respiration	
[RQ Value of glucose → 1	1
17	Long day plants: Plants that require the exposure to light for a perio	d
	exceeding a well defined critical duration.	1 1
	Short day plants: Plants that require the exposure to light for a period less tha	n
	the well defined critical duration.	1
18	Movements exhibited by the cells of human body:	
	◆ Amoeboid → Ex: macrophages / Leucocytes	
	Ciliary → Ex: ciliated epithelium of trachea / female reproductive tract	
	Muscular → Ex: movement of limbs / jaws / tongue, etc.	
1	MENTIONING TWO TYPES OF MOVEMENT: 2 X 3	4 1
	ONE EXAMPLE EACH FOR THE MENTIONED TYPE OF MOVEMENT: 2 X 3	<u> </u>
,	PART – C	
19	Haplontic life cycle in plants:	
	Zygote	
	(2n) Meiosis	
	Spores Spores	
	A (n)	
	Gametogenesis	
	B	
	Haplontie	
	Gametophyte (n)	
		. 3
	MENTIONING OF EACH STEP AND EVENT / PROCESS IN THE CYCLE: ½ M (6 x ½	·)

ĺ	20	Aestivation in angiosperms:		
		• Valvate: Sepals or petals in a whorl touch one another at the margin,		
		· without overlapping.		
		Twisted: One margin of the sepal or petal overlaps that of the next one and		
		so on.		
		• Imbricate: Margins of sepals or petals overlap one another but not in any		
Ì		particular direction.		
	-	Vexillary / Papilionaceous: There are five petals. Large standard petal		
		overlaps the two lateral / wing petals which in turn overlap the two		
		smallest anterior keel petals.		
		MENTIONING OF THREE TYPES OF AESTIVATION: 3 X ½	11/4	
		EXPLANATION OF THE MENTIONED TYPES OF AESTIVATION: 3 X ½	11/2	
	21	Difference between homopolymers and heteropolymers (polysaccharides):		
		Homopolymers:		
	-	Consist of only one type of monosaccharide	1	
		Ex: cellulose / starch / glycogen / inulin ANY ONE	1/2	
		Heteropolymers:		
		Consist of different types of monosaccharides	1	
		Ex: chitin	1/2	
	22	Alcohol fermentation:		
		Gluçose]	
				,
		Glyceraldehyde - 3 - phosphate		, ,
		NAD*		
٠.		3 – phosphoglyceric acid		
		Phospho-enol pyruvic acid		
]	- Landing -		
		Pyruvic acid NADH+ H*		
		NAD*		
		Ethyl alcohol + CO ₂		
		EACH STEP: ½ Mark → 5 x ½	21/2	
		FORMATION AND UTILISATION OF NADH+H ⁺	1/2	
	23	Disorders of the digestive system:		
	ŀ	Inflammation of the intestinal tract: Caused due to bacterial or viral infections		
		and by the parasites of the intestine like tape worm, round worm, thread		
		worm, hook worm, pin worm, etc.		
		Jaundice: The liver is affected. Skin and eyes turn yellow due to the deposition		
		of bile pigments.		
		Vomiting: It is a reflex action in which the contents of the stomach are ejected.		
		A feeling of nausea precedes vomiting.		
		Diarrhoea: It is the abnormal frequency of bowel movement and increased		
		liquidity of the faecal discharge which reduces the absorption of food.	<u> </u>	

	Constipation: It is a condition in which the faeces are retained within the	
	rectum as the bowel movements occur irregularly.	
	Indigestion: It is the improper digestion of food leading to a feeling of fullness	
	which is caused due to inadequate enzyme secretion, anxiety, food poisoning,	
	over eating, and spicy food.	
	MENTIONING ANY THREE DISORDERS: 3 X ½	1½
	EXPLANATION OF THE MENTIONED DISORDERS: 3 X ½	1½
24	(a) Tidal Volume: Volume of air inspired or expired during a normal respiration.	1
	(b) Residual Volume: Volume of air remaining in the lungs even after a forcible	
	expiration.	1
	(c) Vital Capacity: The maximum volume of air a person can breathe in after a	
	forced expiration.	1
25	Differentiation: It is the maturation of cells derived from meristems to perform	
	specific functions.	1
	Dedifferentiation: It is the regaining of the capacity to divide by the cells that	
f	have lost the capacity to divide.	1
,	Redifferentiation: It is the specialization of the cells obtained from the division	
,	of dedifferentiated cells to perform specific functions.	1
26	Classification of animals based on the chief excretory material produced:	
	Ammonotelic animals: Ex – fish	
	Ureotelic animals: Ex – mammals, many terrestrial amphibians and marine	
	fishes	
	Uricotelic animals: Ex = reptiles, birds, land snails and insects	
	MENTIONING OF TYPES BASED ON EXCRETORY PRODUCT: 3 X 1 $ ightarrow$ 1½	11/2
	ONE EXAMPLE EACH FOR EACH OF THE TYPE OF ANIMALS: 3 X 1 \rightarrow 1½	11/2
	PART – D	:
	Section – I	
27	Characteristics of birds:	
	They possess beak.	
	The forelimbs are modified into wings.	
	The hind limbs generally have scales and are modified for walking,	
	swimming or clasping the tree branches.	
	Skin is dry without glands except the oil gland at the base of the tail.	
	The long bones are hollow with air cavities (pneumatic).	
	The digestive tract of birds has additional chambers, the crop and gizzard.	
	Heart is completely four chambered.	
	They are warm-blooded (homoiothermous) animals.	
	Respiration is by lungs and is supplemented by air sacs connected to lungs.	
	Sexes are separate, fertilisation is internal and development is direct.	
!	• They are oviparous. ANY FIVE FEATURES: 5 x 1	1
28	Events that occur during anaphase and telophase of mitosis:	_
	Anaphase:	
	Centromeres split and chromatids separate.	1
		1
	Chromatids move to opposite poles.	

	Telophase:	_
İ	Chromosomes cluster at opposite spindle poles and their identity is lost.	1
	Nuclear envelope forms around the chromosome clusters.	1
	Nucleolus, golgi complex and ER reform.	1
29	T.S. of Monocot leaf:	
	BULLIFORM CELL GUARD CELL CUTICLE	
	UPPER EPIDERMIS BORDER PARENCHYMA MESOPHYLL LOWER EPIDERMIS	
	RESPIRATORY CAVITY STOMA SCLERENCHYMA	
i	NEAT AND CORRECT DIAGRAM	2
	ANY SIX CORRECT LABELLINGS: 6 x ½	3
30	(a) The criteria for essentiality of elemenst are:	
	The element must be absolutely necessary for supporting normal	
	growth and reproduction and in their absence, the plants do not	
	complete their life cycle or set the seeds.	1
	The requirement of the element must be specific and not replaceable	
	by another element.	. 1
	The element must be directly involved in the metabolism of the plant.	1
		-
	(b) Leg-haemoglobin protects nitrogenase enzyme from oxygen and acts as an	1
	oxygen scavenger.	1
	(c) Nitrosomonas / Nitrococcus / Nitrobacter ANY ONE	
31	Calvin cycle:	
	Ribulosci Co, + H,O	
	in Spinise pinate	
	1) Carboxylation	,

	\setminus	
	Regeneration 3 Distribution Communication	
		i
	ATP	
	(2) Reduction NADPH	
	Triose phospitate	
	ADP	
	P _c +NADI**	
	Sucrose, starch	
	NAMING DIFFERENT STEPS AND INTERMEDIATE COMPOUNDS	3
	SHOWING THE UTILISATION OF CO2, ATP AND NADPH	
		2

	Glandular epithelium:	
	Cells are columnar and cuboidal which are specialized for secretion.	1
35	Mass flow hypothesis:	
	Glucose is prepared at the source by photosynthesis is converted to sucrose which moves into the companion cells and then loaded into the sieve tube	
	cells by active transport.	· 1
	 A hypertonic condition is developed in the phloem and therefore, water in the adjacent xylem moves into the phloem by osmosis. 	; 1
	Osmotic pressure builds up in the phloem and the phloem sap will move to areas of lower pressure like sink.	1
	At the sink, sucrose moves out of the phloem sap by active transport into the cells which will use the sugar.	1
	As sugars are removed, the osmotic pressure decreases and water moves out of the phloem.	1
36	(a) Clotting of blood:	
and a co	An injury or a trauma stimulates the platelets in the blood to release certain factors like thrombokinase which activate the mechanism of	٠.,
	coagulation.	1/2
	Certain factors released by the tissues at the site of injury and calcium	
	ions also play a very important role in clotting.	1/2
	Thrombokinase converts inactive prothrombin into active thrombin.	1
	Thrombin converts fibrinogen, a plasma protein into a network of fibrin threads.	1
37	Sagittal section of human brain:	
	Cerebrum Cerebrum Cerebrum Cerebrum Cerebrum Cerebral aqueduct Midbram Pons Cerebellum Medulla Spinal cord	
	NEAT AND CORRECT DIAGRAM	2
	ANY SIX CORRECT LABELLINGS: 6 x ½	3

Blue Print of the Question Paper 03

Time: 3.15Hours

I PUC BIOLOGY

Max Marks: 70

						(15%)	(1:			(15%)	(1			(30%)	(3		. 1	(40%)	(41			and Percentage	
	·				Ø	15 Marks	15 N		Ø	5 Marks	15]		Ø	35 Marks	35	•	n	40Marks	40N		TKS	Grand Total of Marks	
												-		ļ	-		<u> </u>					Total Number of Qns.	Tota
105	11	∞	∞	10	2	—	_	:	2	ı	1	3	4	3	2	2	3	4	4	Ŋ			
28	ယ	2	2	ယ	⊢	-	-		<u> </u>			—	1	<u> </u>		—	·	—	2	—	34	PHYSIOLOGY	;v
27	w	2	2	2					_				— ,		-		—	}t	<u> </u>	1	31	PLANT PHYSIOLOGY	4.
17	2	2		-						:		.—	—	<u> </u>			<u> </u>	—			19	STRUCTURE AND FUNCTIONS.	ပ္ရမ
								-														ANIMALS.	
16	1	2	12	—	—		<u> </u>		· · · · · · · · · · · · · · · · · · ·		}			—				⊢		-	17	STR. ORG IN PLANTS &	2.
17	2		2	w									-		<u> </u>	-	<u> </u>		-	2	19	DIVERSITY IN THE LIVING WORLD.	-
	SM	Mε	ZM	WI	5M	3M	2M	1M	5M	3M	I 2M	1M	5M	3M	2M	1M	5M	3M	2M	1M	120	II PUC	
htage							Ç		٠	Tomos del a	, C												No.
s Weig		Total	Tc		n	xpression	Expression Skills		_	igition	Application Appreciation	A A	ling	Understanding	Jnder		Эе	Knowledge	Kno		ng Hours	UNIT	SI.
Mark						,			4		•	-						1		·	Teachi		1

Note: 1) The question paper must be prepared based on the individual blue print which is based on the weightage of marks fixed for each Unit /chapter.

I PUC

MODEL QUESTION PAPER 03

Time: 3.15 Hours

Max. Marks: 70

General Instructions:

- i. This question paper consists of five parts A, B, C and D.
- ii. All the parts are compulsory.
- iii. Draw diagrams whenever necessary.

Unlabelled diagrams or illustrations do not attract any marks.

PART - A

Answer the following questions in one word or one sentence each:

10x1=10.

- 1. Name the kingdom that includes prokaryotes.
- 2. What is Herbarium?
- 3. Define species.
- 4. Mention the living component of xylem.
- 5. Mitochondria are called as semiautonomous structure. Why?
- 6. Why RUBISCO is must for C₃ plants?
- 7. Name the gaseous hormone
- 8. Which hormone deficiency causes Diabetes insipidus?
- 9. What is the roll of corpus callosum?
- 10. Name the smallest lymph vessel.

PART - B

Answer any FIVE of the following questions in 3-5 sentences each:

5x2=10

- 11. Write four salient features of archaebacteria.
- 12. Which generations dominate in diplontic lifecycle? Give two examples for diplontic life cycle.
- 13. Draw a neat labeled diagram of loose C. T.
- 14. Earthworms are called as "friends of farmers". Justify.
- 15. Define guttation. Which part of the day guttation occurs?
- 16. Who proposed Law of Limiting factors? Define the law.
- 17. Name the parts of mid brain.
- 18. Write note on CAD.

PART - C

Answer any FIVE of the following questions in 100-150 words each, wherever applicable:

5x3=15.

- 19. Classify types of muscular tissue. Write two vital points of any one muscular tissue.
- 20. Based on position of floral parts on thalamus classify flowers. Mention an example for each.
- 21. What is a mesosome in prokaryotic cell? Enumerate its function.
- 22. Define enzyme. Write any four properties of it.

- 23. With reference to solution define following terms. A) Isotonic solution, B) Hypo solution & Hyper solutions.
- 24. What is a deficiency symptom of essential elements? What are its symptoms?
- 25. Write note on gastric digestion.
- 26. Other than blood which circulatory medium is present in vertebrates? Add note on it.

PART – D SECTION I

Answer any FOUR of the following questions in 200-250 words each, wherever possible: 4x5=20

- 27. Write salient features of Pteridophyta
- 28. Explain the structure of nucleus.
- 29. Define photoperiodism. Classify plants based on it.
- 30. Explain pressure flow hypothesis.
- 31. Name any five hormones secreted by hypophysis with one function of each.
- 32. Explain Erythroblastsis foetalis.

SECTION II

Answer any THREE of the following questions in 200-250 words each, wherever possible:

3x5=15.

- 33. Draw neat labeled diagram of alimentary canal of cockroach.
- 34. With the help neat diagram write note on fluid mosaic model of plasma membrane, mention any two functions of it.
- 35. Write schematic representation of EMP pathway.
- 36. Draw a neat labeled diagram of nephron.
- 37. Write differences between non-chordate and chordate.

<u>I PUC</u>

SCHEME OF EVALUATION

PART -A

1. Kingdom Monera.	1
2. Herbarium is a store house of collected plant specimens that are	dried, pressed & preserved on
sheets & arranged according to a system of classification.	1
3. A group of closely related organisms capable of inbreeding to prod	duces fertile offspring. 1
4. Xylem parenchyma.	1
5. As it has its own DNA.	1-
6. Without RUBISCO co2 cannot enter Clavin cycle or carboxylation is	s not possible. 1
7. Ethylene.	1
8. ADH.	1 .
9. It helps in binding two cerebral hemispheres.	1
10. Lacteal capillary.	1
	•
11. Any four points as given in the book. Each point ½ marks.	
12. Sporophyte dominate diplontic life cycle. Eg; Gymnosprems	& Angiosprems. 1+½+½.
13. Refer Biology prescribed text book for I PUC, Page no 103, fig	
14. They burrow in the soil and make it porous which helps in re	
ii) Helps in penetration in the soil,	
iii) Increasing soil fertility. Any two points only.	Each point 1 mark.
15. Guttation is defined as "loss of water in the form of liquid through	· ·
occurs during night time.	i specifica canca nyadinoac ir
16. Blackmann.	1 mark.
"If a physiological process is control by more than one factor, the	
the factor which is nearest to its minimal valve: it is the factor which o	
quantity in changed."	1mark.
17. I) Cerebral aqueduct	1 mark.
ii) Corpora quadrigemina	1 mark.
18. CAD: Coronary Artery Disease, often referred to as Atherosclerosi	is. i 1 mark.
It is caused by deposition of calcium, fat, cholesterol & fibrous ti	ssues, which narrows lumen of
artey.	1mark.
PART - C	
19. Classication	1 mark.
Any two points.	Each point 1 mark.
20. A) Hypogynous with one example.	½ + ½ marks.
B): Epigynous with one example.	½ + ½ marks.

C) Perigynous with one example.	1/2 + 1/2 marks.
22. Defn: "It is biocatalyst which alters the rate of reaction, without undergoing	-
itself"	1 mark.
,	n point ½ marks.
23. Isotonic solution: The external solution balances with osmotic pressure of the cy	
	2 mark.
Hypotonic solution: Less concentration than isotonic solution.	½ mark.
Hypertonic solution: More concentration than isotonic solution.	½ mark.
24. The morphological changes are indicative of certain elements are called deficien	icy symptom.
Its symptoms are chlorosis, necrosis and stunted growth, premature fall of lea	aves & buds and
inhibition of cell division. (Any two symptoms)	1+½+½ marks.
25. Gastric digestion: Role of Hcl.	1 mark.
Pepsinogen to active Pepsin.	½ mark.
Role of Pepsin.	1mark.
Prorennin to active Rennin.	½ mark.
Role of Rennin.	1mark.
Definition of chyme.	1mark.
26. Lymph (Tissue Fluid)	1 mark.
*It is extra cellular fluid (ECF) *It is identical to blood plasma.* It has leucocytes.	*It consists of
lymph node, lymph vessels and the smallest lymph vessel is called lacteal capilla	ry. * Lymph
nodes produce lymph. (Any four points)	th point ½ marks.
PART- D	
SECTION -I	
27. Refer Biology prescribed text book for I PUC, Page no 36 & 38. Each point	1 mark.
28. Refer Biology prescribed text book for I PUC, Page no 138. Each point	1 mark.
29. Definition of photoperiodism.	2 marks.
Classification: Long day plants, Definition.	½+½ mark.
Short day plants, Definition.	½+½ mark.
Neutral day plants, Definition.	½+½ mark.
reduction day plants, benintion.	72 1 72 11 IOT K.

\$### *** ###\$

1 mark.

1 mark.

30. Refer Biology prescribed text book for I PUC, Page no 191. Each point

31. Refer Biology prescribed text book for I PUC, Page no 332. Each point

Note: Any hormone of adenohypophysis only, but not neurohypophysis. 32. Refer Biology prescribed text book for I PUC, Page no 281. (Case study.)